Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Weber, S. H., Kleipool, R. J. C. \& Spoelstra, D. B. (1957). Recl Trav. Chim. Pays-Bas, 74, 193-199.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1994). C50, 755-757

Crystal Studies of Musk Compounds. X. $\ddagger \ddagger$ 1,1,2,3,3-Pentamethyl-2,3,4,5,6,7-hexahydroinden-4-one

Dirk J. A. De Ridder,§ Jan Fraanje and Henk Schenk
University of Amsterdam, Laboratory for Crystallography, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 21 September 1993; accepted 4 November 1993)

Abstract

The structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$, which is a strong musk, has been established by X-ray diffraction. The five- and six-membered rings adopt envelope and sofa conformations, respectively. The molecular dimensions are discussed with respect to the known structureactivity relationships of musk compounds.

\section*{Comment}

The title compound (I) is the main component of the commercial product Cashmeran and has a strong musk odour (International Flavors \& Fragrances Inc., 1973). It is one of the most intriguing musk compounds, since it is, as yet, the only known bicyclic musk compound without an aromatic ring and may be the first example of a new series of musk compounds. The crystal structures of a number of bicyclic compounds belonging to the indan family (i.e. an aromatic six-membered ring fused with a nonaromatic five-membered ring) have been discussed in part III (De Ridder \& Schenk, 1991a) and part VIII (De Ridder, Čapková, Hatjisymeon, Fraanje \& Schenk, 1994) of this series.

(I)

[^0]In this compound the methyl group attached to C 2 is found to be in the equatorial position, analogous to the indan compounds described previously. The six-membered ring has two conjugated double bonds which constrain atoms $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9$ and O to be coplanar or nearly so [the maximum deviation from the leastsquares plane through these atoms is 0.046 (5) \AA]. As a result, the six-membered ring has to adopt a C6-sofa conformation and the five-membered ring a C2-envelope conformation; the ring-displacement asymmetry parameters (Duax, Weeks \& Rohrer, 1976) are $\Delta_{s}^{6}=4.3^{\circ}$ and $\Delta_{s}^{2}=$ 0.7°, respectively.
The cyclopentene ring shows the same type of disorder as discussed in part VIII (De Ridder, Čapková, Hatjisymeon, Fraanje \& Schenk, 1994) of this series. The quantities defined in part VIII are as follows for the title compound: the dihedral angle between the least-squares planes through atoms $\mathrm{C} 1, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 3$ and atoms $\mathrm{C} 1, \mathrm{C} 2$, C 3 is $7.1(8)^{\circ}$; the distance of atom C2 from the former plane is 0.11 (1) \AA; the sum of the angles around atom C2 is 358.7°. For comparison, the average values for four compounds not having a disordered cyclopentene ring are $25.3^{\circ}, 0.39 \AA$ and 341°, respectively. This corroborates with the high displacement parameter observed for C 2 .
For a number of indans and tetralins (both acetyl and nitro compounds), the dimensions of a triangle defined by the two quaternary C atoms of the non-aromatic ring and the $s p^{2}-\mathrm{C}$ atom of the acetyl group (or the N atom of a nitro group in the same position) attached to the aromatic ring, have been compared (De Ridder \& Schenk, 1991b). The distances between the quaternary atoms were 2.512.54 and 3.05-3.09 \AA for the indans and tetralins, respectively, the former being comparable to the distance in the title compound [C1 \cdots C3 2.497 (6) Å]. However, the two other dimensions of the triangle, in the ranges 4.91-5.09

Fig. 1. PEANUT drawing (Hummel, Hauser \& Bürgi, 1990) of the title compound. Displacement ellipsoids are shown at the 30% probability level; H atoms (not labelled) are drawn as spheres of arbitrary size.
and $5.72-5.85 \AA$, respectively, are significantly larger than found in the title compound [C3 \cdots C4 2.651 (6) and C1‥C4 3.760 (6) Å]. Narvaez, Lavine \& Jurs (1986) proposed a slightly different descriptor to correlate the musk odour, namely the distance of the quaternary C centres to the O atom. Their average intermolecular distances ($3.7,5.8$ and $6.3 \AA$) are significantly larger than in Cashmeran: $\mathrm{C} 1 \cdots \mathrm{C} 32.497$ (6), C3 $\cdots \mathrm{O} 3.004$ (6) and C1 $\cdots \mathrm{O}$ 4.725 (6) \AA. Based on the electron-topology approach to the quantitative structure-activity relationships (QSAR) problem, Bersuker et al. (1991) postulated that the necessary conditions for a compound to have a musk odour involve two independent molecular fragments: the first consists of a polar group (CO, NO, CN) whose electronegative atom is situated symmetrically and at a distance of 6.7 (5) \AA with respect to two methyl (or methylene) groups, the distance between them being 2.5 (5) A; the second fragment includes two other methyl (or methylene) groups situated at a distance of 5.5 (5) \AA from each other. Cashmeran is an example of a strong musk not fulfilling the conditions for the first fragment. The best combination of atoms to get the first fragment is obtained by combining atoms C 10 and C 11 with the O atom at distances of $5.72(1)(\mathrm{O} \cdots \mathrm{C} 10), 5.705(9)(\mathrm{O} \cdots \mathrm{C} 11)$ and 2.46 (1) $\AA(\mathrm{C} 10 \cdots$ C11). The first two distances are significantly below the lower range proposed by Bersuker et al. (1991).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$
$M_{r}=206.33$
Monoclinic
$P 2_{1} / c$
$a=13.327$ (1) \AA
$b=7.0693$ (9) \AA
$c=14.115$ (1) \AA
$\beta=104.588$ (9) ${ }^{\circ}$
$V=1286.9(2) \AA^{3}$
$Z=4$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical (DIFABS;
Walker \& Stuart, 1983)
$T_{\text {min }}=0.50, T_{\text {max }}=1.49$
2458 measured reflections
2389 independent reflections

Refinement

Refinement on F
$R=0.084$
$w R=0.11$
$S=0.268$

1520 reflections
224 parameters
$w=1 /\left(4.20+F_{o}+0.0075 F_{o}^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.59$
$\Delta \rho_{\max }=0.454 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.378 \mathrm{e} \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
C1	0.2746 (3)	-0.0765 (6)	0.1949 (3)	0.053 (2)
C2	0.3428 (8)	-0.029 (2)	0.2935 (7)	0.20 (1)
C3	0.2931 (3)	0.1206 (7)	0.3450 (3)	0.057 (2)
C4	0.1209 (3)	0.3149 (6)	0.2714 (3)	0.052 (2)
C5	0.0299 (3)	0.3362 (6)	0.1855 (3)	0.058 (2)
C6	0.0539 (4)	0.2841 (6)	0.0883 (3)	0.059 (2)
C7	0.1022 (3)	0.0877 (6)	0.0941 (3)	0.052 (2)
C8	0.1881 (3)	0.0680 (5)	0.1837 (3)	0.046 (2)
C9	0.1987 (3)	0.1724 (6)	0.2652 (3)	0.048 (2)
C10	0.3366 (6)	-0.042 (1)	0.1189 (6)	0.110 (5)
$\mathrm{Cl1}$	0.2296 (6)	-0.2747 (8)	0.1787 (8)	0.114 (5)
C 12	0.4323 (5)	-0.139 (1)	0.3423 (5)	0.088 (4)
C 13	0.2640 (5)	0.060 (1)	0.4395 (4)	0.089 (4)
C14	0.3676 (4)	0.287 (1)	0.3718 (4)	0.089 (4)
0	0.1294 (3)	0.4120 (5)	0.3463 (2)	0.074 (2)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.50(1)$	$\mathrm{C} 3-\mathrm{C} 14$	$1.524(8)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.518(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.491(5)$
$\mathrm{C} 1-\mathrm{C} 10$	$1.53(1)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.464(6)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.519(7)$	$\mathrm{C} 4-\mathrm{O}$	$1.241(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.53(1)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.530(7)$
$\mathrm{C} 2-\mathrm{C} 12$	$1.45(1)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.524(6)$
$\mathrm{C} 3-\mathrm{C} 9$	$1.507(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.484(5)$
$\mathrm{C} 3-\mathrm{C} 13$	$1.541(8)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.344(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	$102.3(5)$	$\mathrm{C} 13-\mathrm{C} 3-\mathrm{C} 14$	$107.0(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10$	$107.9(6)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$117.7(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$118.1(6)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O}$	$121.2(4)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 10$	$110.5(4)$	$\mathrm{C} 9-\mathrm{C} 4-\mathrm{O}$	$121.2(3)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 11$	$110.2(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$113.2(4)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 11$	$107.7(6)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$110.6(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$111.4(7)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$110.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12$	$123.8(8)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	$123.6(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 12$	$123.5(7)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$111.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$101.1(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$124.8(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 13$	$116.9(6)$	$\mathrm{C} 3-\mathrm{C} 9-\mathrm{C} 4$	$126.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 14$	$108.5(6)$	$\mathrm{C} 3-\mathrm{C} 9-\mathrm{C} 8$	$113.2(4)$
$\mathrm{C} 9-\mathrm{C} 3-\mathrm{C} 13$	$111.7(4)$	$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$120.4(3)$
$\mathrm{C} 9-\mathrm{C} 3-\mathrm{C} 14$	$111.6(4)$		

The structure was solved by direct methods. The H atoms were introduced at calculated positions, $1.09 \AA$ from their carrier atom, and included as riding atoms in the structure-factor calculations. The temperature factor of the H atom attached to C2 was kept fixed at $0.08 \AA^{2}$. Refinement was performed using a full-matrix least-squares algorithm on F, anisotropic for non-H atoms and isotropic for H atoms. Data collection: CAD4 Software (Enraf-Nonius, 1989). Cell refinement: CELCON program, comparable to Xtal LATCON (Hall \& Stewart, 1990). Data reduction: Xtal ADDREF, SORTRF. Program(s) used to solve structure: Xtal SIMPEL. Program(s) used to refine structure: Xtal CRYLSQ. Molecular graphics: PEANUT (Hummel, Hauser \& Bürgi, 1990). Software used to prepare material for publication: Xtal BONDLA.

The authors gratefully acknowledge the provision of crystals by Dr M. Pesaro of Givaudan-Roure-Dübendorf, Switzerland, and the computer facilities provided by Professor Bürgi to plot Fig. 1.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71822 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1085]

References

Bersuker, I. B., Dimoglo, A. S., Gorbachov, M. Yu., Vlad, P. F. \& Pesaro, M. (1991). New J. Chem. 15, 307-320.

De Ridder, D. J. A. (1992). X-ray Crystal Studies of Musk Compounds. PhD thesis, pp. 83-136. Univ. of Amsterdam, The Netherlands.
De Ridder, D. J. A., Čapková, P., Hatjisymeon, K., Fraanje, J. \& Schenk, H. (1994). Acta Cryst. B50. Accepted.

De Ridder, D. J. A., Fraanje, J. \& Schenk, H. (1994). Acta Cryst. C50, 753-755.
De Ridder, D. J. A. \& Schenk, H. (1991a). Acta Cryst. C47, 1044-1047.
De Ridder, D. J. A. \& Schenk, H. (1991b). QSAR: Rational Approaches to the Design of Bioactive Compounds. Proceedings of the VIII European Symposium on Quantitative Structure-Activity Relationships, edited by C. Silipo \& A. Vittoria, pp. 301-304.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Hummel, W., Hauser, J. \& Bürgi, H.-B. (1990). J. Mol. Graphics, 8, 214-220.
International Flavors \& Fragrances Inc. (1973). US Patent 3773836 (Nov. 20, 1973); US Patent 3816350 (June 11, 1974).
Narvaez, J. N., Lavine, B. K. \& Jurs, P. C. (1986). Chem. Senses, 11, 145-156.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1994). C50, 757-759

X-ray Study of Static Disorder in N-Methylacetamide

F. Hamzaoul and F. Baert
Laboratoire de Dynamique et Structure des
Matériaux Moléculaires Associé au CNRS URA 801. Univesité des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq CEDEX, France

(Received 1 June 1993; accepted 5 October 1993)

Abstract

N-Methylacetamide (NMA), $\quad \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, \quad$ is the smallest molecule to contain a peptide bond and is considered to be the basic structural unit of peptide

chains in proteins. An X-ray electron density study at 110 K showed the presence of static disorder. The present work describes this disorder and the configuration of this biologically important molecule.

Comment

NMA is a small planar molecule of fundamental importance which has been extensively investigated by IR and Raman spectroscopy (Mizushima \& Shimanouchi, 1950). A preliminary report of the structure of NMA at 238 K has been published (Katz \& Post, 1960) in which the authors describe the structure as ordered (space group Pnma with R $=0.13$). The results of an accurate electronic density study of the molecule would be an important contribution to complete the work cited above in order to gain a better understanding of the peptide bond.

NMA
The refinement was initially carried out using the least-squares program LINEX (Coppens, 1974). An anisotropic refinement in which the coordinates of the H atoms were adjusted to result in tetrahedral bond angles and $\mathrm{C}-\mathrm{H}$ bond lengths of $1.09 \AA$ gave $R=0.09$. A difference Fourier synthesis revealed a second position for the molecule (Fig. 1). An occupation factor of 0.9 was assigned to the first molecule (molecule A) and a factor of 0.1 was assigned to the second one (molecule B). The positions of the atoms of the second molecule were corrected to adjust its geometry to that of molecule A.

Further refinement was carried out using the leastsquares program ORION (André, Fourme \& Renaud, 1971), in which atoms may be constrained in groups. The thermal motion of the molecules was analysed initially in terms of rigid-body motion, but this resulted in a singularity in the least-squares normal matrix, giving the errors 'the atoms lie on a quadratic curve' (Schomaker \& Trueblood, 1968). Therefore, the five non- H atoms of molecule A were allowed to refine freely with anisotropic displacement factors, while molecule B was treated as a rigid body with isotropic displacement factors B of $2.03 \AA^{2}$ for the non-H atoms; for H atoms an isotropic DebyeWaller factor refined to $1.81 \AA^{2}$. This second refinement procedure resulted in a decreased R value of 0.066 . The structure of molecule A is shown in Fig. 2.

In order to determine the nature of this disorder a second X-ray study was carried out at 210 K . Using the same refinement procedure described above, a

[^0]: \dagger This work forms part of a thesis by De Ridder (1992).
 \ddagger Part IX: De Ridder, Fraanje \& Schenk (1994).
 § Present address: European Commission, Institute for Transuranium Elements, Postfach 2340, D-76125 Karlsruhe, Germany.

